Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.537
Filtrar
1.
Gut Microbes ; 16(1): 2334970, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563680

RESUMO

Gastrointestinal (GI) infection is evidenced with involvement in COVID-19 pathogenesis caused by SARS-CoV-2. However, the correlation between GI microbiota and the distinct pathogenicity of SARS-CoV-2 Proto and its emerging variants remains unclear. In this study, we aimed to determine if GI microbiota impacted COVID-19 pathogenesis and if the effect varied between SARS-CoV-2 Proto and its variants. We performed an integrative analysis of histopathology, microbiomics, and transcriptomics on the GI tract fragments from rhesus monkeys infected with SARS-CoV-2 proto or its variants. Based on the degree of pathological damage and microbiota profile in the GI tract, five of SARS-CoV-2 strains were classified into two distinct clusters, namely, the clusters of Alpha, Beta and Delta (ABD), and Proto and Omicron (PO). Notably, the abundance of potentially pathogenic microorganisms increased in ABD but not in the PO-infected rhesus monkeys. Specifically, the high abundance of UCG-002, UCG-005, and Treponema in ABD virus-infected animals positively correlated with interleukin, integrins, and antiviral genes. Overall, this study revealed that infection-induced alteration of GI microbiota and metabolites could increase the systemic burdens of inflammation or pathological injury in infected animals, especially in those infected with ABD viruses. Distinct GI microbiota and metabolite profiles may be responsible for the differential pathological phenotypes of PO and ABD virus-infected animals. These findings improve our understanding the roles of the GI microbiota in SARS-CoV-2 infection and provide important information for the precise prevention, control, and treatment of COVID-19.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Animais , SARS-CoV-2 , Virulência , Macaca mulatta
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124185, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38565049

RESUMO

Lung cancer is the most common cancer and the leading cause of death in China. The current gold standard for clinical lung cancer diagnosis is based on histopathological examination of tumors, but it has the limitation for easy operation and convenient applications. Therefore, researchers are still striving to develop other tools and methods for non-invasive and rapid assessment of the health conditions of lung cancer patients. Hair, as a reflection of the metabolism of the body, is closely related to human health conditions. In principle, Fourier-transform infrared (FTIR) spectroscopy can probe the major chemical compositions in the hair. However, as indicated by previous studies, there is still the challenge to make good use of FTIR spectroscopy for achieving reliable analysis of hair from cancer patients. In this study, hair samples from 82 lung cancer patients were collected and subjected to FTIR measurements and analysis, which showed the protein content in the hair is closely related to the protein content in the blood serum of patients, and the contents of protein and lipid are statistically lower in the lung cancer patients. Furthermore, we demonstrated that FTIR spectroscopy could be employed to monitor the hair of lung cancer patients undergoing chemotherapy, and confirmed that the FTIR spectra of the hair may reflect the resultant effect of the chemotherapy. As such, this work validates the way of using FTIR spectroscopy in hair analysis for the assistance of medical diagnosis of lung cancer as well as monitoring the conditions of the patients under the medical treatment.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Espectroscopia de Infravermelho com Transformada de Fourier , Cabelo/química , China
3.
Medicine (Baltimore) ; 103(14): e37721, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579030

RESUMO

RATIONALE: White matter lesions (WMLs) are structural changes in the brain that manifest as demyelination in the central nervous system pathologically. Vasogenic WMLs are the most prevalent type, primarily associated with advanced age and cerebrovascular risk factors. Conversely, immunogenic WMLs, typified by multiple sclerosis (MS), are more frequently observed in younger patients. It is crucial to distinguish between these 2 etiologies. Furthermore, in cases where multiple individuals exhibit WMLs within 1 family, genetic testing may offer a significant diagnostic perspective. PATIENT CONCERNS: A 25-year-old male presented to the Department of Neurology with recurrent headaches. He was healthy previously and the neurological examination was negative. Brain magnetic resonance imaging (MRI) showed widespread white matter hyperintensity lesions surrounding the ventricles and subcortical regions on T2-weighted and T2 fluid-attenuated inversion recovery images, mimicking immunogenic disease-MS. DIAGNOSES: The patient was diagnosed with a patent foramen ovale, which could explain his headache syndrome. Genetic testing unveiled a previously unidentified missense mutation in the SERPINC1 gene in the patient and his father. The specific abnormal laboratory finding was a reduction in antithrombin III activity, and the decrease may serve as the underlying cause for the presence of multiple intracranial WMLs observed in both the patient and his father. INTERVENTIONS: The patient received percutaneous patent foramen ovale closure surgery and took antiplatelet drug recommended by cardiologists and was followed up for 1 month and 6 months after operation. OUTCOMES: While the lesions on MRI remain unchanging during follow-up, the patient reported a significant relief in headaches compared to the initial presentation. LESSONS: This case introduces a novel perspective on the etiology of cerebral WMLs, suggesting that hereditary antithrombin deficiency (ATD) could contribute to altered blood composition and may serve as an underlying cause in certain individuals with asymptomatic WMLs.


Assuntos
Deficiência de Antitrombina III , Forame Oval Patente , Esclerose Múltipla , Doenças do Sistema Nervoso , Doenças Vasculares , Substância Branca , Masculino , Humanos , Adulto , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Forame Oval Patente/patologia , Antitrombina III/genética , Deficiência de Antitrombina III/complicações , Deficiência de Antitrombina III/genética , Deficiência de Antitrombina III/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Doenças Vasculares/patologia , Doenças do Sistema Nervoso/patologia , Esclerose Múltipla/diagnóstico , Cefaleia , Mutação , Antitrombinas
4.
Org Lett ; 26(15): 3316-3320, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38598253

RESUMO

Operationally simple and generally applicable arene nitration with cheap and easily accessible chemicals has been a long-sought transformation in the synthetic organic community. In this work, we realized this goal with nontoxic and inexpensive Fe(NO3)3·9H2O as the nitro source and easily recyclable solvent hexafluoroisopropanol as the promotor via a network of hydrogen-bonding interactions. As a result of the relative mildness and high reliability of this protocol, late-stage nitration of various highly functionalized natural products and commercially available drugs was realized.

5.
J Phys Chem Lett ; 15(16): 4486-4493, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38634523

RESUMO

Two-dimensional (2D) MXene materials with innovative properties and versatile applications have gained immense popularity among scientists. The green and environmentally friendly Lewis acid salt etching route has opened up immense possibilities for the advancement of 2D MXene materials. In this study, we precisely etched the Al element from the double A-element MAX phases Ti2(SnyAl1-y)C by employing Lewis molten salt guided by redox potentials. This approach led to the discovery of a novel Ti2SnyCClx dual-phase structure consisting of Ti2SnC and Ti2CClx. We then established that the etching of the MAX phase via Lewis acid salt is facilitated by the oxidation of M-site elements, with the MX sublayer acting as an electron transmission conduit to enable the oxidation of A-site elements. This work is dedicated to unraveling the underlying mechanisms governing the etching processes using Lewis molten salt, thereby contributing to a more profound comprehension of these innovative etching routes.

6.
Adv Mater ; : e2404360, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657134

RESUMO

The poor bulk-phase and interphase stability, attributable to adverse internal stress, impede the cycling performance of silicon microparticles (µSi) anodes and its commercial application for high-energy-density lithium-ion batteries. In this work, we propose a groundbreaking gradient-hierarchically ordered conductive (GHOC) network structure, ingeniously engineered to enhance the stability of both bulk-phase and the solid electrolyte interphase (SEI) configurations of µSi. Within the GHOC network architecture, two-dimensional transition metal carbides (Ti3C2Tx) acts as a conductive "brick", establishing a highly conductive inner layer on µSi, while the porous outer layer, composed of one-dimensional Tempo-oxidized cellulose nanofibers (TCNF) and polyacrylic acid (PAA) macromolecule, functions akin to structural "rebar" and "concrete", effectively preserves the tightly interconnected conductive framework though multiple bonding mechanisms, including covalent and hydrogen bonds. Additionally, Ti3C2Tx enhances the development of a LiF-enriched SEI. Consequently, the µSi-MTCNF-PAA anode presents a high discharge capacity of 1413.7 mAh g-1 even after 500 cycles at 1.0 C. Moreover, a full cell, integrating LiNi0.8Mn0.1Co0.1O2 with µSi-MTCNF-PAA, exhibits a capacity retention rate of 92.0% following 50 cycles. This GHOC network structure could offer an efficacious pathway for stabilizing both the bulk-phase and interphase structure of anode materials with high volumetric strain. This article is protected by copyright. All rights reserved.

7.
Am J Transplant ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38648890

RESUMO

The activation of innate immunity following transplantation has been identified as a crucial factor in allograft inflammation and rejection. However, the role of cGAS/STING signaling-mediated innate immunity in the pathogenesis of allograft rejection remains unclear. Utilizing a well-established murine model of corneal transplantation, we demonstrated increased expression of cGAS and STING in rejected corneal allografts compared to syngeneic and normal corneas, along with significant activation of the cGAS/STING pathway, as evidenced by the enhanced phosphorylation of TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3). Pharmacological and genetic inhibition of cGAS/STING signaling markedly delayed corneal transplantation rejection, resulting in prolonged survival time and reduced inflammatory infiltration. Furthermore, we observed an increase in the formation of neutrophil extracellular traps (NETs) in rejected allografts, and the inhibition of NET formation through targeting peptidylarginine deiminase 4 (PADI4) and DNase I treatment significantly alleviated immune rejection and reduced cGAS/STING signaling activity. Conversely, subconjunctival injection of NETs accelerated corneal transplantation rejection and enhanced the activation of the cGAS/STING pathway. Collectively, these findings demonstrate that NETs contribute to the exacerbation of allograft rejection via cGAS/STING signaling, highlighting the targeting of the NETs/cGAS/STING signaling pathway as a potential strategy for prolonging allograft survival.

8.
Anal Chim Acta ; 1304: 342552, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637053

RESUMO

BACKGROUND: Rapid and accurate detection of glutathione content in human blood plays an important role in real-time tracking of related diseases. Currently, surface-enhanced Raman scattering/spectroscopy (SERS) combined with nanozyme material has been proven to have excellent properties in the detection applications compared to many other methods because of it combines the advantages of trace detection capability of SERS and efficient catalytic activity of nanozymes. However, there are still existing problems in real sample detection, and to achieve quantitative detection is still challenging. RESULTS: In this study, gold nanoparticles (AuNPs) were synthesized in situ on the surface of two-dimensional Cu-porphyrin metal-organic framework (MOF) nanosheets to produce the AuNPs@Cu-porphyrin MOF nanozyme, which exhibited both oxidase-like activity and SERS detection ability. On one hand, the intrinsic oxidase-like activity of the nanozyme could be inhibited due to the chelation of glutathione (GSH) and Cu, which thus led to the visual color change of the solution. On the other hand, the abundant Raman "hot spots" at the nanogap generated by Au NPs and the internal standard (IS) signal provided by Cu-meso-tetra (4-carboxyphenyl) porphine (Cu-TCPP) MOF improved the sensitivity and quantitative accuracy of detection. SIGNIFICANCE AND NOVELTY: A dual-mode signal output sensor based on the nanozyme was thus established, which could be used in the trace detection of GSH. Such a dual-mode sensor possesses excellent detection performance, with the advantage of both wide detection range from 1 to 300 µM in the colorimetric detection mode and high sensitivity with LOD of 5 nM in the SERS detection mode, and can be applied to GSH detection in actual serum samples with reliable results.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Humanos , Ouro/química , Estruturas Metalorgânicas/química , Colorimetria , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Oxirredutases , Glutationa
9.
Cancer Manag Res ; 16: 225-243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525373

RESUMO

Purpose: Consensus molecular subtypes (CMS) are mainly used for biological interpretability and clinical stratification of colorectal cancer (CRC) in primary tumors (PT) but few in metastases. The heterogeneity of CMS distribution in metastases and the concordance of CMS between PT and metastases still lack sufficient study. We used CMS to classify CRC metastases and combine it with histopathological analysis to explore differences between PT and distant metastases. Patients and Methods: We obtained gene expression profiles for 942 PT samples from TCGA database (n=376) and GEO database (n=566), as well as 442 metastasis samples from GEO database. Among these, 765 PT samples and 442 metastasis samples were confidently identified with CMS using the "CMS classifier" and enrolled for analysis. Clinicopathological manifestation and CMS classification of CRC metastases were assessed with data from GEO, TCGA, and cBioPortal. Overall, 105 PT-metastasis pairs were extracted from 10 GEO datasets to assess CMS concordance. Tumor microenvironment (TME) features between PT and metastases were analyzed by immune-stromal infiltration with ESTIMATE and xCell algorithms. Finally, TME features were validated with multiplex immunohistochemistry in 27 PT-metastasis pairs we retrospectively collected. Results: Up to 64% of CRC metastases exhibited concordant CMS groups with matched PT, and the TME of metastases was similar to that of PT. For most common distant metastases, liver metastases were predominantly CMS2 and lung and peritoneal metastases were mainly CMS4, highlighting "seed" of tumor cells of different CMS groups had a preference for metastasis to "soil" of specific organs. Compared with PT, cancer-associated fibroblasts (CAF) reduced in liver metastases, CD4+T cells and M2-like macrophages increased in lung metastases, and M2-like macrophages and CAF increased in peritoneal metastases. Conclusion: Our findings underscore the importance of CMS-guided specific organ monitoring and treatment post-primary tumor surgery for patients. Differences in immune-stromal infiltration among different metastases provide targeted therapeutic opportunities for metastatic CRC.

10.
Chemistry ; : e202400352, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470164

RESUMO

The utilization of a magnetic field to manipulate spin states has emerged as a novel approach to enhance efficiency in electrocatalytic reactions, distinguishing from traditional strategies that focus on tuning activation energy barriers. Currently, this approach is specifically tailored to reactions where spin states change during the catalytic process, such as the oxidation of singlet H2O to triplet O2. In the magnetically enhanced oxygen evolution reaction (OER) procedure, the parallel spin alignment on the ferromagnetic catalyst was induced by the external magnetic field, facilitating the triplet O-O bonding, which is the rate limiting step in OER. This review centers on recent advancements in harnessing external magnetic fields to enhance OER performance, delving into mechanistic approaches for this magnetic promotion. Additionally, we provide a summary of magnetic field application in other electrocatalytic reactions, including oxygen reduction, methanol oxidation, and CO2 reduction.

11.
Talanta ; 273: 125902, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508126

RESUMO

Current genotoxicity assessment methods are mainly employed to verify the genotoxic safety of drugs, but do not allow for rapid screening of specific genotoxic impurities (GTIs). In this study, a new approach for the recognition of GTIs has been proposed. It is to expose the complex samples to an in vitro nucleoside incubation model, and then draw complete DNA adduct profiles to infer the structures of potential genotoxic impurities (PGIs). Subsequently, the genotoxicity is confirmed in human by 3D bioprinted human liver organoids. To verify the feasibility of the approach, lansoprazole chloride compound (Lanchlor), a PGI during the synthesis of lansoprazole, was selected as the model drug. After confirming genotoxicity by Comet assay, it was exposed to different models to map and compare the DNA adduct profiles by LC-MS/MS. The results showed Lanchlor could generate diverse DNA adducts, revealing firstly its genotoxicity at molecular mechanism of action. Furthermore, the largest variety and content of DNA adducts were observed in the nucleoside incubation model, while the human liver organoids exhibited similar results with rats. The results showed that the combination of DNA adductomics and 3D bioprinted organoids were useful for the rapid screening of GTIs.


Assuntos
Adutos de DNA , Nucleosídeos , Humanos , Ratos , Animais , Nucleosídeos/toxicidade , Cromatografia Líquida , Espectrometria de Massas em Tandem , Dano ao DNA , Fígado , DNA , Organoides , Lansoprazol
12.
ACS Nano ; 18(14): 10019-10030, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38545930

RESUMO

MAX phases are highly promising materials for electromagnetic (EM) wave absorption because of their specific combination of metal and ceramic properties, making them particularly suitable for harsh environments. However, their higher matching thickness and impedance mismatching can limit their ability to attenuate EM waves. To address this issue, researchers have focused on regulating the electronic structure of MAX phases through structural engineering. In this study, we successfully synthesized a ternary MAX phase known as Sc2GaC MAX with the rare earth element Sc incorporated into the M-site sublayer, resulting in exceptional conductivity and impressive stability at high temperatures. The Sc2GaC demonstrates a strong reflection loss (RL) of -47.7 dB (1.3 mm) and an effective absorption bandwidth (EAB) of 5.28 GHz. It also achieves effective absorption of EM wave energy across a wide frequency range, encompassing the X and Ku bands. This exceptional performance is observed within a thickness range of 1.3 to 2.1 mm, making it significantly superior to other Ga-MAX phases. Furthermore, Sc2GaC exhibited excellent absorption performance even at elevated temperatures. After undergoing oxidation at 800 °C, it achieves a minimum RL of -28.3 dB. Conversely, when treated at 1400 °C under an argon atmosphere, Sc2GaC demonstrates even higher performance, with a minimum RL of -46.1 dB. This study highlights the potential of structural engineering to modify the EM wave absorption performance of the MAX phase by controlling its intrinsic electronic structure.

13.
Eur J Med Chem ; 269: 116304, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484677

RESUMO

Necroptosis is a type of regulated cell death known for its pro-inflammatory nature due to the substantial release of cellular contents. The phosphorylation of key proteins, namely RIP1, RIP3, and mixed lineage kinase domain-like protein (MLKL), plays a pivotal role in the processes associated with necroptosis. Consequently, inhibiting the phosphorylation of any of these three key protein kinases could effectively block necroptosis. Utilizing a scaffold hopping strategy, we have successfully designed and synthesized a series of novel RIP1 inhibitors with selective and anti-necrotic properties, using compound o1 as the lead compound. In comparison to o1, SY1 has demonstrated heightened antinecroptosis activity and binding affinity in vitro studies. Moreover, SY1 has exhibited superior efficacy in both in vivo studies, specifically in the context of SIRS, and pharmacokinetic assessments. Furthermore, SY1 has proven effective in significantly suppressing the central inflammatory response induced by epilepsy.


Assuntos
Epilepsia , Síndrome de Resposta Inflamatória Sistêmica , Humanos , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Necroptose , Proteínas Quinases/metabolismo , Epilepsia/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose/fisiologia
14.
Small ; : e2311869, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497499

RESUMO

2D transition metal carbides and/or nitrides, MXenes, are a class of widely studied materials with great potential for energy storage applications. The control of surface chemistry is an effective approach for preparing novel MXenes and modifying their electrochemical properties. However, an in-depth and systematic atomic-scale study of the effect of surface termination on MXene stability and electrochemical performance is scarce and thus is highly desired. Here, through high-throughput first-principles calculations, 28 stable chalcogen-functionalized M2 CTz (M = V, Nb, and Ta, T = S, Se, and Te) under different chemical environments are identified. The reduction of termination coverage improves electrical conductivity but weakens in-plane stiffness. Intriguingly, based on charge transfer mechanism, the diffusion barrier of lithium/sodium atoms on the M2 CTz exhibits a volcano-like relationship with termination coverage, and the ion diffusion channel formed in half termination coverage greatly accelerates lithium ion diffusion and returns to or exceeds sodium ion diffusion rate at full termination coverage. V2 CSe2 /Nb2 CSz not only displays the large lithium/sodium capacity (592/409-466 mAhg-1 ) but also exhibits low barrier energy and open-circuit voltage, suggesting a promising candidate anode material for lithium/sodium-ion batteries. These findings provide insights into the design and fabrication of MXenes and tuning the electrochemical performance of MXenes by controlling termination coverage.

15.
Neurol Sci ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38523205

RESUMO

INTRODUCTION: This study was designed to analyze clinical and radiographic features of adult patients coexisting with NMDAR-IgG and MOG-IgG. METHODS: Eleven adult patients coexisting with NMDAR-IgG and MOG-IgG were collected from Xiangya Hospital, Central South University, between June 2017 and December 2021. Fifty-five patients with anti-NMDAR encephalitis and 49 with MOG-AD were served as controls. RESULTS: Onset age was 27 (IQR 20-34) years old. Seizures and psychotic symptoms were prominent symptoms. Ten of eleven patients presented abnormal T2/FLAIR hyperintensity, mainly involving the cortex, brainstem, and optic nerve. Compared with the NMDAR IgG ( +)/MOG IgG ( -) group, the NMDAR IgG ( +)/MOG IgG ( +) group showed more ataxia symptoms (27.3% vs. 3.6%, P = 0.037), while more T2/FLAIR hyperintensity lesions were found in the brainstem (54.5% vs. 7.3%, P < 0.001) and optic nerve (27.3% vs. 1.8%, P = 0.011) with more abnormal MRI patterns (90.9% vs. 41.8%, P = 0.003). In comparison with the NMDAR IgG ( -)/MOG IgG ( +) group, the NMDAR IgG ( +)/MOG IgG ( +) group had more seizures (72.7% vs. 24.5%, P = 0.007) and mental symptoms (45.5% vs. 0, P < 0.001). The NMDAR IgG ( +)/MOG IgG ( +) group tended to be treated with corticosteroids alone (63.6% vs. 20.0%, P = 0.009), more prone to recur (36.5% vs. 7.3%, P = 0.028) and lower mRS score (P = 0.036) at the last follow-up than pure anti-NMDAR encephalitis. CONCLUSION: The symptoms of the NMDAR IgG ( +)/MOG IgG ( +) group were more similar to anti-NMDAR encephalitis, while MRI patterns overlapped more with MOG-AD. Detecting both NMDAR-IgG and MOG-IgG maybe warranted in patients with atypical encephalitis symptoms and demyelinating lesions in infratentorial regions.

16.
Food Funct ; 15(8): 4207-4222, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38512055

RESUMO

Numerous natural compounds are recognized for their anti-inflammatory properties attributed to antioxidant effects and the modulation of key inflammatory factors. Among them, astaxanthin (AST), a potent carotenoid antioxidant, remains relatively underexplored regarding its anti-inflammatory mechanisms and specific molecular targets. In this study, human monocytic leukemia cell-derived macrophages (THP-1) were selected as experimental cells, and lipopolysaccharides (LPS) served as inflammatory stimuli. Upon LPS treatment, the oxidative stress was significantly increased, accompanied by remarkable cellular damage. Moreover, LPSs escalated the expression of inflammation-related molecules. Our results demonstrate that AST intervention could effectively alleviate LPS-induced oxidative stress, facilitate cellular repair, and significantly attenuate inflammation. Further exploration of the anti-inflammatory mechanism revealed AST could substantially inhibit NF-κB translocation and activation, and mitigate inflammatory factor production by hindering NF-κB through the antioxidant mechanism. We further confirmed that AST exhibited protective effects against cell damage and reduced the injury from inflammatory cytokines by activating p53 and inhibiting STAT3. In addition, utilizing network pharmacology and in silico calculations based on molecular docking, molecular dynamics simulation, we identified interleukin-6 (IL-6) as a prominent core target of AST anti-inflammation, which was further validated by the RNA interference experiment. This IL-6 binding capacity actually enabled AST to curb the positive feedback loop of inflammatory factors, averting the onset of possible inflammatory storms. Therefore, this study offers a new possibility for the application and development of astaxanthin as a popular dietary supplement of anti-inflammatory or immunomodulatory function.


Assuntos
Anti-Inflamatórios , Inflamação , Interleucina-6 , Lipopolissacarídeos , Macrófagos , NF-kappa B , Xantofilas , Xantofilas/farmacologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Células THP-1 , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia
17.
Anal Chem ; 96(16): 6236-6244, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38446717

RESUMO

In recent years, the expression and progression of programmed cell death ligand 1 (PD-L1) as an immunomarker in the context of a cell metabolic environment has gained significant attention in cancer research. However, intercellular bioprocesses that control the dynamics of PD-L1 have been largely unexplored. This study aimed to explore the cell metabolic states and conditions that govern dynamic variations of PD-L1 within the cell metabolic environment using an aptamer-based surface-enhanced Raman scattering (SERS) approach. The aptamer-SERS technique offers a sensitive, rapid, and powerful analytical tool for targeted and nondestructive detection of an immunomarker with high sensitivity and specificity. By combining aptamer-SERS with cell state profiling, we investigated the modulation in PD-L1 expression under different metabolic states, including glucose deprivation, metabolic coenzyme activity, and altered time/concentration-based cytokine availability. The most intriguing features in our findings include the cell-specific responses, cell differentiation by revealing distinct patterns, and dynamics of PD-L1 in different cell lines. Additionally, the time-dependent variations in PD-L1 expression, coupled with the dose-dependent relationship between glucose concentration and PD-L1 levels, underscore the complex interplay between immune checkpoint regulation and cellular metabolism. Therefore, this work demonstrates the advantages of using highly-sensitive and specific aptamer-SERS nanotags for investigating the immune checkpoint dynamics and related metabolic bioprocess.

18.
Aging Cell ; : e14127, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426629

RESUMO

Domestic dogs have great potential to expand our understanding of the determinants of aging. To understand the aging pattern of domestic dogs and evaluate whether they can be used as an aging model, we performed RNA sequencing on white blood cells from domestic dogs aged 1-9 years and treated aged dogs with classical antiaging approaches. We obtained 30 RNA sequencing libraries and identified 61 age-associated genes with dynamic changes, the majority of which were related to metabolism and immune function, which may be predominant biomarkers for aging in dogs. We next treated aged dogs with canine mesenchymal stem cells (cMSCs), nicotinamide mononucleotide, and rapamycin to determine whether and how they responded to the antiaging interventions. The results showed that these treatments can significantly reduce the level of inflammatory factors (IL-6 and TNF-α). MSCs effectively improved the heart functions of aged dogs. Three key potential age-related genes (PYCR1, CCRL2, and TOX) were reversed by MSC treatment, two of which (CCRL2 and TOX) are implicated in immunity. Overall, we profiled the transcriptomic pattern of domestic dogs and revealed that they may be a good model of aging, especially in anti-inflammatory investigations.

19.
Ecotoxicol Environ Saf ; 274: 116176, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479309

RESUMO

Ambient air pollution is a major global health concern. Yet, no study has thoroughly assessed its link to respiratory mortality. Our research evaluated the combined and individual effects of air pollutants on respiratory mortality risks based on the UK Biobank. A total of 366,478 participants were studied. A Cox proportional hazards model was used to estimate the respiratory mortality risk from combined long-term exposure to five pollutants, summarized as a weighted air pollution score. During a median of 13.6 years of follow-up, 6113 deaths due to respiratory diseases were recorded. The hazard ratios (HRs) and 95% confidence intervals (95% CIs) of respiratory diseases were 2.64 (2.05-3.39), 1.62 (1.23-2.12), 2.06 (1.73-2.45), 1.20 (1.16-1.25), and 1.07 (1.05-1.08) per 10 µg/m3 increase in PM2.5, PM2.5-10, PM10, NO2, and NOx, respectively. The air pollution score showed a dose-response association with an elevated respiratory mortality risk. The highest versus lowest quartile air pollution score was linked to a 44% increase in respiratory mortality risk (HR 1.44, 95% CI: 1.33-1.57), with consistent findings in subgroup and sensitivity analyses. Long-term individual and joint air-pollutant exposure showed a dose-response association with an increased respiratory mortality risk, highlighting the importance of a comprehensive air-pollutant assessment to protect public health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Respiratórias , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , Material Particulado/análise , Estudos Prospectivos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Doenças Respiratórias/epidemiologia , Dióxido de Nitrogênio
20.
Heliyon ; 10(6): e27733, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545177

RESUMO

Extrachromosomal DNAs (ecDNAs) are a pervasive feature found in cancer and contain oncogenes and their corresponding regulatory elements. Their unique structural properties allow a rapid amplification of oncogenes and alter chromatin accessibility, leading to tumorigenesis and malignant development. The uneven segregation of ecDNA during cell division enhances intercellular genetic heterogeneity, which contributes to tumor evolution that might trigger drug resistance and chemotherapy tolerance. In addition, ecDNA has the ability to integrate into or detach from chromosomal DNA, such progress results into structural alterations and genomic rearrangements within cancer cells. Recent advances in multi-omics analysis revealing the genomic and epigenetic characteristics of ecDNA are anticipated to make valuable contributions to the development of precision cancer therapy. Herein, we conclud the mechanisms of ecDNA generation and the homeostasis of its dynamic structure. In addition to the latest techniques in ecDNA research including multi-omics analysis and biochemical validation methods, we also discuss the role of ecDNA in tumor development and treatment, especially in drug resistance, and future challenges of ecDNA in cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...